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Topology of superfluid 3He in cylindrical pores 
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Abstract. The effect of boundary conditions on the topological classification of line 
singularities in a cylindrical pore is studied for the A, B and AI phases of superfluid 3He. 

1. Introduction 

Topological homotopy group methods have been applied to the classification of point 
and line singularities in the A and B phases of superfluid 3He by Toulouse and KlCman 
(1976), Volovik and Mineev (1977a, b) and Cross and Brinkman (1977), and to the AI 
phase by Bailin and Love (1978). These methods allow one to discover which textures 
of the superfluid can deform continuously into each other, and which are forbidden to 
decay into one another by a topological conservation law. However, when the 
superfluid is in a container, the topology is further restricted by the boundary conditions 
at the walls, and textures may become topologically inequivalent which were equivalent 
in an open system. This is because even if two textures are equivalent in the open 
system and are both compatible with the boundary conditions, they may be unable to 
deform into each other without violating the boundary conditions at some intermediate 
stage. More formally, the constraints imposed by the boundary conditions result in the 
topological space of allowed order parameters being ‘smaller’ on the boundary than in 
the interior of the superfluid, with consequently more topological quantum numbers. 

Two questions then arise. First, how large are the free energy barriers associated 
with these new topological quantum numbers? In the open system, ignoring the effect 
of dipolar interactions, it is necessary to leave the phase altogether to evade the 
conditions imposed by the topological conservation laws, and so there is a free energy 
barrier of the order of the bulk free energy. To escape the constraints imposed by the 
new topological quantum numbers produced by the boundary conditions, it is necessary 
to violate the boundary conditions, and for the A and AI phases this involves a free 
energy of order ~ O F B / R ,  where FB is the total bulk free energy of the sample of 
superfluid, R is the radius of the pore, and t o .=  cm (see, for example, Leggett 
1975). On the other hand, the total bending free energy of the superfluid is of order 
&FB/R2, and so in pores much wider than loe6 cm the free energy associated with the 
boundary conditions is much larger than the total bending free energy. Consequently, 
the topological quantum numbers associated with the boundary conditions will be ‘good 
quantum numbers’. For the B phase the surface energy is much smaller, and the 
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topological quantum numbers associated with the boundary conditions are only 'good' 
in pores wider than 1 cm. 

The second question that arises is how significant the new topological quantum 
numbers are for the texture of the superfluid as a whole. One might imagine that two 
textures which are equivalent in an open system but inequivalent in the pore might 
deform into each other in the pore in all but a narrow layer of thickness d round the 
boundary. Jf this thickness were very small, the new topological quantum numbers 
would be of limited significance. This healing distance d can be estimated by observing 
that it will not be energetically favourable for rapid healing at the boundary to occur if 
the bending free energy involved is larger than the typical difference in bending free 
energy between two textures. Thus, we expect d / R  %[ln(R/&)]-' where R is the 
radius of the pore and to = cm. Consequently, for pores of radius less than 1 cm, 
healing will occur over a significant fraction of the pore, and the effect of the boundary 
conditions on the topology will have an important effect on the texture as a whole. 
Experiments with one-micrometre pores (Saunders et a1 1978) should therefore exhibit 
topological quantum numbers associated with the boundary conditions. 

In the present paper, we study the homotopy groups associated with the order 
parameter space of the superfluid at the boundary, and the corresponding topological 
quantum numbers. The A, B and A I  phases are studied both in pores of radius much 
larger than the dipolar length cm), but less than about 1 cm, and in pores of 
radius much smaller than the dipolar length, but large compared with cm. The 
effect of a magnetic field along the axis of the pore is also considered. It should be 
emphasised that we concentrate on textures with singularities in the interior of the 
superfluid, and not textures with singularities on the surface. This is in contrast to 
Mermin (1977) who focuses his attention on surface singularities in the A phase. 

The notations we adopt for the order parameters in the A, B and AI phases are as 
follows. In the A phase, the order parameter is of the form 

A,, = Ad, A,, (1.1) 

where A is the magnitude of the order parameter, 

1 
A = -(a1 J2 + i a z )  (1.2) 

is a vector in ordinary space with a1 and a2 real mutually orthogonal unit vectors, and d 
is a real unit vector in spin space. The 1 vector is given by 

1 = a1 x a * .  (1.3) 

In pores of radius large compared with the dipolar length, the dipolar interactions 
impose the constraint d = *l .  A magnetic field aligns d perpendicular to it, 

In the B phase the order parameter is of the form 

A,, = AeiXR (1.4) 
where A is the magnitude of the order parameter, ,y is the phase, and Rei is a rotation 
matrix corresponding to rotation through an arbitrary angle a about an arbitrary 
direction n. If the pore is large on the scale of the dipolar length, a is constrained to be 
cos-'(-+). Finally, in the AI phase the order parameter is of the form 

A,i Ad, Ai, (1.5) 
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where A is the magnitude of the order parameter, 

1 
A = -(a1 + i a2)  (1.6) J2 

is a vector in ordinary space with al and a2 real mutually orthogonal unit vectors (as for 
the A phase), but now 

is a spin-space vector with PI and P 2  real mutually orthogonal unit vectors. In pores of 
large radius compared with the dipolar length, the dipolar interactions constrain 
I = a1 x a2 and PI x P2 to be at right angles to each other. A magnetic field aligns 
fil x P2 parallel to it. 

2. A-phase topology 

In this section, we consider the topological space of allowed order parameters for the 
superfluid near the boundary of a cylindrical pore, beginning with the case where the 
pore is of radius small compared with the dipolar length, so that the effect of dipolar 
interactions can be neglected. 

In the interior of the superfluid the space of order parameters is 

R = (SO3 x S2) /Z2 (2.1) 

7rl(R) = Zq (2.2) 

and the classification of line singularities is given by the first homotopy group 

(see, for example, Volovik and Mineev 1977a, b). On the boundary, only I = *b is 
allowed, where 6 is the unit radius vector in cylindrical coordinates, and the restricted 
order parameter space is (for I = +6, say) 

d = (SI x S2)/Z, ,  (2.3) 

where the SI is the group {R(cri)} defined by writing the general orbital order 
parameter A as 

1 
42 A = R ( i rd)R (a;)- (i + if), (2.4) 

where i , f , f  are fixed orthonormal vectors, and 4 is the unit azimuthal vector in 
cylindrical coordinates. The S 2  is associated with the unit vector d, as before. The left 
cosets with respect to Z 2  are formed as usual to take account of the possibility of 
multiplying the orbital and spin parts of the order parameter separately by -1 without 
changing the order parameter. (We use R ( a i )  to denote a rotation through (Y about the 
axis r i . )  

The homotopy group r l ( d )  can be calculated using an exact sequence of 
homomorphisms (see, for example, Steenrod 1951, Volovik and Mineev 1977a, b). 
Any ambiguity which arises can be resolved by studying the properties of the natural 
mapping from SI X S 2  to (SI x S2) /Z2 (see the appendix). The result is 

= Z .  (2.5) 
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For example, the texture 

J ~ A  = (g + i i )  exp[i(m + $141 

d =f cos[(n i$)#I]+j sin[(n +$)&I 
may be assigned topological quantum numbers N ( Z )  = 2m - 1. On the other hand, in 
the Z4 classification appropriate to an open system it has N(Z4) = (2m - 1) (mod 4). 
Thus, for example, the textures with m = 0 and m = 2 are equivalent in the absence of 
boundary conditions, but become inequivalent in a pore. 

(In addition to the (first) homotopy group classification given above, we must of 
course also treat I = 6 and 1 = -6 as topologically inequivalent since there is no way of 
proceeding from one configuration to the other without violating the boundary condi- 
tions at an intermediate stage. In other words, the manifold of all allowed order 
parameters, including 1 = *6, consists of two disconnected pieces.) 

If a magnetic field is applied along the axis of the pore, then the d vector is confined 
to a circle, and the space of order parameters in the interior of the superfluid will be 

R = (SO3 x S')/Z2, (2.7) 

leading to homotopy group 

7r,(R) = z2 + 2. (2.8) 

On the boundary of the superfluid, where 1 = *6, the appropriate order parameter 
space will be (for 1 = +6 say) 

d = (S x S' ) /Z2 ,  (2.9) 

where the first S' is defined by writing the general form for A as 

and the second S' is associated with d. The corresponding homotopy group is 

7r1(d) = z +z. (2.11) 

For example, the texture 

JZA = (g + i i )  exp[i(m +;>#I] 

d = f cos(n + $)4 + y^ sin(n +$)#I 

may be assigned topological quantum numbers 

N 1 ( Z ) = m - n - l ,  N 2 ( Z )  = 2n + 1. 

(2.12) 

In the absence of boundary conditions, it has 

N(Z2)  = (m - n - 1) mod 2, N ( Z )  = 2n + 1 

and, for example, m = 0 and m = 2 become equivalent. In fact the homotopy group 
given by (2.1 1) is correct for the magnetic field in an arbitrary direction, although the 
specific example (2.12) would need modification. 
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If the pore radius is greater than the dipolar length, then dipolar interactions result 

R = SO3 (2.13) 

in a smaller order parameter space. In the interior of the superfluid 

and 

r i (R)=&,  (2.14) 

(see, for example, Toulouse and Kltman 1976), and on the boundary 

R = s', (2.15) 

where the S' associated with A is defined as in equation (2.10). We have immediately, 

r 1 ( d )  = 2. (2.16) 

The texture 

&A = (4 + i i >  e"*, d = * B  (2.17) 

may be assigned topological quantum number N ( Z )  = m - 1, whereas in the absence of 
boundary conditions such textures are only inequivalent modulo 2. 

Since d = * l  is already perpendicular to the axis of the pore, a magnetic field applied 
parallel to the axis will not impose any further restriction on the space of order 
parameters. This means that the discussion of the boundary topology given in equa- 
tions (2.15), (2.16), and (2.17), still applies. This should be compared with the situation 
with a strong magnetic field along the axis of the pore in the absence of boundary 
conditions, where 

R - S ' X S '  (2.18) 

and 

7 1  ( R  ) = Z + Z. (2.19) 

(Starting from a reference triad &A = y^ + i2 the first S' corresponds to rotation of cy1 

and cy2 about the x axis, and the second S' corresponds to rotation of the 1 vector about 
the z axis.) In  the absence of boundary conditions the texture of equation (2.17) may be 
assigned topological quantum numbers 

N l V )  = m, N2(Z) = 1. 

More generally the homotopy group is unaltered for a strong magnetic field in an 
arbitrary direction, but the specific example (2.17) would need modification, This is 
because a strong magnetic field H confines d to a plane perpendicular to H, and 
minimisation of the dipolar energy subject to this constraint yields, as before, precisely 
two distinct values of d. 

3. B-phase topology 

For the B phase the surface free energy is of order 50F,/R, where FD is the total dipolar 
free energy of the sample, R is the pore radius and to = cm (see, for example, 
Smith et a1 1977). On the other hand the total bending free energy is of order 
&106F~ f R2,  and so in pores nurrower than 1 cm it is larger than the surface free energy. 
Thus in such pores any constraints on the order parameter arise purely from the bulk, 
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dipolar and magnetic field contribution to the free energy, and there are no new 
quantum numbers associated with surface effects. We therefore consider only pores 
wider than 1 cm. The effect of dipolar interactions then leads to 

R = S ' x S 2  (3.7) 

7r1(R)=Z. (3.8) 

and 

(See, for example, Volovik and Mineev (1977a, b).) On the boundary, only n = * f i  is 
allowed. The order parameter space appropriate to the boundary is 

R =s' (3.9) 

and 

7Tl(d) = z, (3.10) 

where the S' is associated with the phase of the order parameter. In this case, the 
boundary conditions have no effect on which textures are topologically inequivalent, 
apart from the obvious one associated with n = rtfi being the only allowed configura- 
tions. 

The preceding considerations are unaffected by the presence of a large magnetic 
field in the plane of the wall. This is because although such a field modifies the boundary 
condition (see Leggett 1975), it still fixes n to have one of two distinct values. Thus the 
topology is unmodified. (In an open system with a magnetic field R = S' x S' and 
r1(R)  = Z + Z  for small volumes; for large volumes R = S' and rrl(R) = Z.) 

4. Al-phase topology 

The normal experimental situation for the AI phase is a large magnetic field so that the 
phase has a sufficient width in temperature. We take the magnetic field to be along the 
axis of the pore, and consider first the case where the pore is of small radius compared 
with the dipolar length, so that dipolar interactions may be neglected. In that case, the 
order parameter space for the interior of the superfluid is 

R = (SO3 x S ' ) / S '  (4.1) 

T,(R) = zz. (4.2) 

and using an exact sequence of homomorphisms one finds that 

(See Steenrod (1951) and Bailin and Love (1978).) 

1 = +A say) 
On the boundary only 1 = * f i  is allowed, and the space of order parameters is (for 

R = (S' x S ' ) / S ' ,  (4.3) 

where the first 5"' in the numerator is associated with A and can be defined by writing the 
general allowed A as 

1 
A = R ( a r r ~ ) R ( a i ) 7 - ( ~ + i ~ ) ,  t.2 (4.4) 
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and the second S' is defined by writing the general allowed d in a magnetic field as 

1 
d = R ( p i ) -  (f t if). 42 

(R(aI2) denotes a rotation through a about the axis I2.) The S' X S1 in the numerator is 
thus homeomorphic to ( R ( a f ) ,  R(p i ) ) .  The S' in the denominator is the subgroup 
( R ( y i ) ,  R (-72)) of this, and corresponds to the freedom to multiply h by exp(-iy) and 
d by exp(iy) without changing the order parameter. It follows that the order parameter 
depends only on a + p  and that R is just S'. Thus 

T l ( R )  = z. (4.5) 

JZA = eim6(c$ + i i )  

&'d = f +ip (4.6) 

As an example, the texture 

can be assigned topological quantum number N ( Z ) =  m - 1. This contrasts with the 
situation without boundary conditions, where all even values of m are topologically 
equivalent and all odd values of m are equivalent. 

If the radius of the pore is large compared with the dipolar length. then the order 
parameter space for the interior of the superfluid is 

R = (S' X S '  x S')/S' (4.7) 

5 7 , ( R ) = Z + Z .  (4.8) 

with 

(See Bailin and Love (1978)) 
On the boundary, the appropriate order parameter space is 

R = (S' x S')/S' (4.9) 

exactly as for negligible dipolar forces. (On the boundary d and A are automatically in 
the correct configuration to minimise the dipolar energy when a magnetic field is 
applied along the axis of the pore.) Accordingly, the texture of equation (4.6)can again 
be assigned a topological quantum number N ( 2 )  = m - 1, This should be compared 
with the case where the boundary condition is ignored as in equation (4.8), and there are 
two integer quantum numbers N 1 ( Z )  = 1 and N 2 ( Z )  = m. 

We also discuss the situation when the magnetic field is negligible. To realise this 
situation experimentally it may be necessary to study the metastable Al phase prepared 
by switching off the magnetic field. Consider first a pore of radius small compared with 
the dipolar length. In that case, the order parameter space for the interior of the 
superfluid is 

(4.10) R = (so3 X s03)/S1 

and 

T ~ ( R ) =  Z 2 .  

(See Bailin and Love (1978)) 
On the boundary, I = *b, and for I = +b 

(4.11) 

d = (SI x sO3)/S', (4.12) 
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where the S' in the numerator is defined by writing the general allowed A in the form 
given in equation (4.4), and the SO3 is associated with d as before. The S' x SO3 in the 
numerator is thus homeomorphic to ( R ( a i ) ,  R ( p 6 ) )  where 6 is a general axis of 
rotation, and the S' in the denominator is the ( R ( y f ) ,  R ( - y i ) )  subgroup. Using an 
exact sequence of homomorphisms we find 

77'(R) = 2 2 .  (4.1 3) 

For example, the texture 

&A = 2 + i d ,  J2d = e"'($ + i f >  (4.14) 

may be assigned a topological quantum number 

N ( Z 2 )  = (m + 1) mod 2, 

which is the same classification as for an open system. 
If the magnetic field is negligible, and the pore radius is large compared with the 

dipolar length, then the order parameter space for the interior of the superfluid 
becomes 

(4.15) R = (SO3 x S' x S ' ) / S ' ,  

with homotopy group 

771 (R  ) = z2 + z. (4.16) 

(See Bailin and Love (1978)) 
On the boundary, the order parameter space is restricted to 

R = (S'  x S' x S')/SL, (4.17) 

where the three numerator SL's can be defined by writing the general allowed A as 

1 
A = R (4774 )R (2 + i j )  (4.18) 

and the general allowed d as 

1 
d = R (/.rrd)R (yi)R ( / 3 2 ) ~ z ( j  + i i ) .  (4.19) 

As before, the denominator S' corresponds to the freedom to multiply A by ePiY and d 
by eiy without changing the order parameter. It follows that the order parameter 
depends only on a + @ and that R is S' X S ' .  Thus 

r , ( R > =  z +z. (4.20) 

As an example the texture 

1 A = elm*--- (d + i i )  

A d  = 6 - i[& cos(n4) + f sin(n4)] 

J 2  

may be assigned the topological quantum numbers 

N , ( Z ) = n + l .  N , ( Z )  = m + n, 

(4.21) 

(4.22) 
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On the other hand, in the absence of boundary conditions, it would be classified 
according to equation (4.16) with 

N ( Z z )  = (n + 1) mod 2, N ( Z ) =  m +n.  

(The topological quantum numbers in the absence of boundary conditions are being 
defined as in Bailin and Love (1978). The connection with this paper is most easily 
made by rewriting A in the present equation (4.18) as 

1 
\ 2  

A = R ( i ~ & ) R ( y i ) R  ((a - y ) 2 ) ~ ( 2  + i f )  

so that R ( tm$)R (yi) can be identified as a common rotation applied to A and d . )  

5. Conclusions 

When account is taken of the constraints provided by the boundary conditions at the 
walls of a pore, the topology of the enclosed superfluid is described by a 'smaller' 
topological space. As a result, textures which would otherwise have been topologically 
equivalent become inequivalent. Non-trivial examples of this arise in the A and A I  
phases. For example in the A phase in a pore of radius small compared with the dipolar 
length, the textures are classified by an integer and are inequivalent for all integer values 
of n ,  whereas in the absence of boundary conditions textures classified by the same 
integer modulo 4 are topologically equivalent. 

Although we are able to classify any texture satisfying the boundary conditions by an 
element of the, appropriate homotopy group, it should be emphasised that the group has 
less significance in this context than it has for open systems. This is because there is no 
physically significant way (that we know of) of defining the sum of two textures both 
satisfying the boundary conditions. 

A by-product of our analysis is that we have completely classified all surface 
singularities of 3He with /(or n )  = +f (say) where z  ̂ is the normal to the surface. This is 
because the form of the order parameter for the dipole free A phase (for example), is 
given by (2.4) without the rotation R($T&). However. for surface singularities the 
addition of homotopy group elements corresponds to physical combination of 
singularities. 

In the case of superfluid 3He in small spherical containers, it is possible, a priori, that 
the boundary conditions can give rise to point singularities where none existed in the 
corresponding open system (because of the 'smaller' order parameter space available to 
deform them away). We have considered all of the cases studied for the cylindrical 
geometry and find that the order parameter space d is unaltered in spherical geometry. 
A study of the second homotopy groups 7~2(d) shows that no point singularities arise 
which were not already present in the open system. And, of course, the restriction 1 or 
n = +i eliminates some of the point singularities which occurred in the absence of 
boundary conditions. 
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Appendix 

For the A phase in small volumes the order parameter space on the boundary is 

z? = (S' x S2>/Z,. 

The exact sequence of homomorphisms is 

i.e. 

@ + Z  -+ Tl(d)-+ZZ'O. 

Tl(d) = z + zz 

T , ( R )  = 2. 

This leads to two possibilities for TI@). Either 

or 

Which is correct can be established by considering the addition law for homotopy group 
elements. Consider for example two identical elements each represented by a path 
joining diametrically opposite points in the product space of the circle S' with the 
sphere S 2 .  The addition of these produces a single circuit of S' rather than the identity 
element. Consequently, 

T'(z?) = z. 
The ambiguities arising for the A phase in a magnetic field are resolved in a similar 
fashion. We have checked all of these results using Mermin's algorithm for computing 
homotopy groups (Mermin 1978). 
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